EE 435

Lecture 15

Compensation of Feedback Amplifiers

Analysis of Internal Node Compensated Two-Stage Op Amps

Consider single-ended input-output (differential analysis only slightly different) Can't get everything but can get most of the small-signal results Since internal node compensated, must have $p_1 << p_2$

Analysis of Internal-Node Compensated Two-Stage Op Amps

$$\begin{array}{l} V_2 \left(sC_C + G_{OF1} + G_{OP1} \right) + G_{mF1} V_{IN} = 0 \\ V_{OUT} \left(sC_L + G_{OP2} + G_{OF2} \right) + G_{mF2} V_2 = 0 \end{array}$$

$$A_{V}(s) = \frac{-G_{mF1}}{sC_{C} + G_{OF1} + G_{OP1}} \bullet \frac{-G_{mF2}}{sC_{L} + G_{OP2} + G_{OF2}}$$

Analysis of Internal-Node Compensated Two-Stage Op Amps

 $G_{\underline{\mathsf{mF2}}}$

$$\begin{split} A_{V0} = & \left(\frac{G_{mF1}}{G_{oF1} + G_{OP1}} \right) \left(\frac{G_{mF2}}{G_{OF2} + G_{OP2}} \right) & |p_2| = \frac{\left(G_{OF2} + G_{OP2} \right)}{C_L} \\ BW = |p_1| \\ & |p_1| = \frac{\left(G_{OF1} + G_{OP1} \right)}{C_C} & BW = |p_1| \\ & GB = \frac{G_{mF1}G_{mF2}}{\left(G_{OF2} + G_{OP2} \right)C_C} \end{split}$$

Analysis of Load Compensated Two-Stage Op Amps

Can't get everything but can get most of the small-signal results

Analysis of Externally Compensated Two-Stage Op Amps

$$A_{V0} = \left(\frac{G_{mF1}}{G_{OF1} + G_{OP1}}\right) \left(\frac{G_{mF2}}{G_{OF2} + G_{OP2}}\right) \qquad |p_2| = \frac{(G_{OF2} + G_{OP2})}{C_c}$$
$$BW = |p_2|$$
$$|p_1| = \frac{(G_{OF1} + G_{OP1})}{C_1} \qquad GB = \frac{G_{mF1}G_{mF2}}{(G_{OF1} + G_{OP1})}$$

If
$$V_2 = -AV_1$$
 then for A large
 $C_{1EQ} = C(1 + A) \approx CA$
 $C_{2EQ} = C(1 + \frac{1}{A}) \approx C$

Thus, a large effective capacitance can be created with a much smaller capacitor if a capacitor bridges two nodes with a large inverting gain !!

Note: The symbol "A" used in the Miller Capacitance should not be confused with the gain of the op amp

If
$$V_2 = -AV_1$$
 then for A large
 $C_{1EQ} = C(1 + A) \approx CA$
 $C_{2EQ} = C(1 + \frac{1}{A}) \approx C$

- If A changes with frequency, C_{1EQ} and C_{2EQ} are no longer pure capacitors
- More useful for giving a concept than for accurate actual analysis because of frequency dependence of A

The Basic Concept – from capacitance multiplication

$$X = [V_X - (-AV_X)]sC = V_X s[C(1+A)]$$

thus

$$Z_{IN} = \frac{V_X}{I_X} = \frac{1}{s[C(1+A)]}$$

So, if A is constant, input looks like a capacitor of value $C_{EQ}=C(1+A)$

Does not behave as a capacitor for $\omega > p$

Internal-Node Miller-Compensated Two-Stage Op Amp

Standard Internal Node Compensation

Miller Compensation

The second stage amplifier can be used to create a Miller capacitance at its input with no circuit overhead!

Compensation capacitance reduced by approximately the gain of the second stage! (the value of the two C_c's are not the same)

Since the gain of the second stage is not constant, however, a new analysis is needed

If C_C is small enough, this can become an internally compensated op amp with internal-node compensation

(Intuitive Analysis based upon C_{CEFF} capacitance assumption)

- To find the high-frequency pole p₂, the circuit has changed
- At high frequencies C_C looks like a short circuit
- Define G₂ to be conductance facing C_L for pole analysis

Note the F2 block is now "diode connected" at high frequencies

$$G_2 = G_{OP1} + G_{OF1} + G_{OP2} + G_{OF2} + G_{MF2} \simeq G_{MF2}$$

Will be shown later that C_C introduces a zero in the gain function

$$A_{V0} = \left(\frac{G_{MF1}}{G_{OF1} + G_{OP1}}\right) \left(\frac{G_{MF2}}{G_{OF2} + G_{OP2}}\right) \qquad BW = \left(G_{OF1} + G_{OP1}\right) \left(\frac{G_{OF2} + G_{OP2}}{C_C G_{MF2}}\right) = \frac{G_{OF1} + G_{OP1}}{C_{CEFF}}$$

$$GB = \frac{G_{MF1}G_{MF2}}{\left(G_{OF2} + G_{OP2}\right)C_C} \qquad \text{If zero does not affect GB} \qquad GB = \frac{G_{MF1}}{C_{F1}}$$

C_c

$$A(s) \simeq \frac{\left(\frac{s}{z_1} + 1\right)G_{MF1}G_{MF2}}{s^2C_CC_L + sC_CG_{MF2} + (G_{OF1} + G_{OP1})(G_{OF2} + G_{OP2})}$$

No, because the C_c decreased by the same factor!

Basic Two-Stage Op Amp

- o Essentially just a cascade of two common-source stages
- o Same gain and pole expressions as developed for the cascade
- o Compensation Capacitor C_C used to get wide pole separation
- o Two poles in amplifier
- o No universally accepted strategy for designing this seemingly simple amplifier

Pole spread $\cong 3 \beta A_{01} A_{02}$ makes C_C unacceptably large

Basic Two-Stage Op Amp (with Miller Compensation)

o Reduces C_C by approximately A₀₂

- o Pole spread $\simeq 3 \beta A_{01}A_{02}$ makes size of C_C manageable
- o One of the most widely used op amp architectures

Basic Two-Stage Miller Compensated Op Amp

By inspection (Notation: $p_1 = -\tilde{p}_1$, $p_2 = -\tilde{p}_2$)

Will also get these results from a more complete (and time consuming) analysis This analysis was based only upon finding the poles and <u>will miss zeros if they exist</u>

(Will now obtain the actual gain which will show zeros if they exist)

(with Miller compensation)

Differential Small Signal Equivalent

Differential Small Signal Equivalent

$$I_{\chi} = V_{\chi} (g_{02} + g_{04}) + g_{m2} \frac{V_{d}}{2} + g_{m4} V_{4}$$

$$V_{4} (g_{m3} + g_{01} + g_{03}) + g_{m1} \left(-\frac{V_{d}}{2} \right) = 0$$

$$I_{\chi} = V_{\chi} (g_{02} + g_{04}) + g_{m2} V_{d} \left(\frac{1 + \frac{g_{m1}}{g_{m2}} \left(\frac{g_{m4}}{g_{m3} + g_{02} + g_{03}} \right)}{2} \right)$$

$$I_{\chi} \cong V_{\chi} (g_{02} + g_{04}) + g_{m2} V_{d} \left(\frac{g_{m4}}{g_{m3} + g_{02} + g_{03}} \right) + g_{m2} V_{d} \right)$$

Differential Small Signal Equivalent

Since M_1 and M_2 are matched as are M_3 and M_4

 $g_{md} = g_{m1}$ $g_{od} = g_{02} + g_{04}$

Differential Small Signal Equivalent

Differential Small Signal Equivalent

(with Miller compensation)

(This happens to be the general form for a two-stage structure with a quarter circuit and counterpart circuit !)

(with Miller compensation)

Solving we obtain:

$$\mathbf{V}_{\text{OUT}} = \mathbf{V}_{\text{d}} \frac{\mathbf{g}_{\text{mo}}(\mathbf{g}_{\text{mo}} - \mathbf{sC}_{\text{C}})}{\mathbf{s}^{2}\mathbf{C}_{\text{C}}\mathbf{C}_{\text{L}} + \mathbf{s}[\mathbf{g}_{\text{mo}}\mathbf{C}_{\text{C}} + (\mathbf{C}_{\text{C}}(\mathbf{g}_{\text{oo}} + \mathbf{g}_{\text{od}}) + \mathbf{C}_{\text{L}}\mathbf{g}_{\text{od}})] + \mathbf{g}_{\text{oo}}\mathbf{g}_{\text{od}}}$$

1

This simplifies to:

$$\mathbf{V}_{\mathsf{OUT}} \cong \mathbf{V}_{\mathsf{d}} \frac{\mathbf{g}_{\mathsf{md}} (\mathbf{g}_{\mathsf{mo}} - \mathbf{sC}_{\mathsf{C}})}{\mathbf{s}^{2} \mathbf{C}_{\mathsf{C}} \mathbf{C}_{\mathsf{L}} + \mathbf{sg}_{\mathsf{mo}} \mathbf{C}_{\mathsf{C}} + \mathbf{g}_{\mathsf{oo}} \mathbf{g}_{\mathsf{o}}}$$

(This happens to be the general form for a two-stage structure with a quarter circuit and counterpart circuit !)

(with Miller compensation)

Differential Small Signal Equivalent

Summary:

$$A(s) = \frac{g_{md}(g_{mo} - sC_{C})}{s^{2}C_{C}C_{L} + sg_{mo}C_{C} + g_{oo}g_{od}}$$

where for the 7T implementation

$$g_{md} = g_{m1} = g_{m2}$$
$$g_{m0} = g_{m5}$$
$$g_{od} = g_{o2} + g_{o4}$$

$$\mathbf{g_{oo}} = \mathbf{g_{o5}} + \mathbf{g_{o6}}$$

Note presence of single RHP zero!

How does this compare to the intuitive approximate analysis that obtained only the poles?

Detailed analysis

Inspection Analysis

Same denominator so same poles and also same dc gain !

Small Signal Analysis of Two-Stage Miller-Compensated Op Amp

(with Miller compensation)

$$A(s) = \frac{g_{md}(g_{m0} - sC_{C})}{s^{2}C_{C}C_{L} + sg_{m0}C_{C} + g_{oo}g_{od}}$$

S

Note this is of the form:

(Notation:
$$p_1 = -\tilde{p}_1$$
 $p_2 = -\tilde{p}_2$ $z_1 = -\tilde{z}_1$)

$$A(s) = A_0 \frac{\frac{z}{\tilde{z}_1} + 1}{\left(\frac{s}{\tilde{p}_1} + 1\right)\left(\frac{s}{\tilde{p}_2} + 1\right)}$$

This has two negative real-axis poles and one positive real-axis zero

(with Internal node compensation i.e. not Miller compensation)

Differential Small Signal Equivalent

(with Internal node compensation)

Differential Small Signal Equivalent

Solving we obtain:

$$V_{OUT} = V_{d} \frac{g_{m0}g_{md}}{(sC_{L} + g_{00})(sC_{C} + g_{0d})}$$

This can be approximated by :

$$V_{OUT} = V_d \frac{g_{m0}g_{md}}{s^2 C_C C_L + s C_C g_{00} + g_{00} g_{0d}}$$

Can show this is the same as was obtained by inspection !

How does the Gain of the Two-Stage Miller-Compensated Op Amp Compare with Internal Compensated Op Amp?

Simple pole calculations for 2-stage op amp

Since the poles of the 2-stage op amp must be widely separated, a simple calculation of the poles from the characteristic polynomial is possible.

Assume p_1 and p_2 are the poles and $|p_1| << |p_2|$

$$p_2 = -a_1$$
 and $p_1 = -a_0/a_1$

Example

A feedback amplifier has a characteristic polynomial of

$D(s) = s^2 + 9000s + 1.8E3$

Without using the quadratic equation, determine the poles by inspection and determine the ratio of the two poles.

solution

A feedback amplifier has a characteristic polynomial of

$D(s) = s^2 + 9000s + 1.8E3$ $D(s) = s^2 + 9000s + 1.8E3$ P_{h} =-9000 $D(s) = s^2 + 9000s + 1.8E3$ $P_1 = -2$

Ratio = 4500

Can now use these results to calculate poles of Basic Two-stage Miller Compensated Op Amp

From small signal analysis:

$$A(s) = \frac{g_{md}(g_{m5} - sC_{c})}{s^{2}C_{c}C_{L} + sg_{m5}C_{c} + g_{oo}g_{od}} \qquad g_{md} = g_{m1} = g_{m2}$$

$$p_{2} = -\frac{g_{m5}}{C_{L}} \qquad p_{1} = -\frac{g_{oo}g_{od}}{g_{m5}C_{C}}$$

$$A_{0} = \frac{g_{m5}g_{md}}{g_{oo}g_{od}}$$

$$GB = \frac{g_{m5}g_{md}}{g_{oo}g_{od}} \bullet |p_{1}| = \frac{g_{m5}g_{md}}{g_{oo}g_{od}} \bullet \frac{g_{oo}g_{od}}{g_{m5}C_{C}} = \frac{g_{md}}{C_{C}}$$

From Previous Inspection

Note the simple results obtained from inspection agree with the more time consuming results obtained from a small signal analysis

Feedback applications of the twostage Op Amp

How does the amplifier perform with feedback?

How should the amplifier be compensated?

Feedback applications of the twostage Op Amp **Open-loop Gain** $A(s) = \frac{N(s)}{D(s)}$ Standard Feedback Gain $A_{FB}(s) = \frac{A(s)}{1 + A(s)\beta(s)} = \frac{N(s)}{D(s) + N(s)\beta(s)} \stackrel{\text{def n}}{=} \frac{N_{FB}(s)}{D_{FB}(s)}$ $N_{FR}(S) = N(S)$ $D_{FR}(s) = D(s) + \beta(s)N(s)$

- Open-loop and closed-loop zeros identical (for standard feedback gain)
- Closed-loop poles different than open-loop poles
- Often $\beta(s)$ is not dependent upon frequency
- Open-loop zeros, gain, and β play a key role in determining closed-loop poles

Feedback applications of the twostage Op Amp

Standard Feedback Gain

 $A_{FB}(s) = \frac{A(s)}{1 + A(s)\beta(s)} = \frac{\beta(s)}{1 + \frac{1}{A(s)\beta(s)}}$

Open-loop Gain

$$A(s) = \frac{N(s)}{D(s)}$$

Alternate Feedback Gain (often FB is not of "standard" form)

$$A_{FB}(s) = \frac{\frac{1}{\beta_1(s)}}{1 + \frac{1}{A(s) \ \beta(s)}} = \frac{\frac{\beta(s)}{\beta_1(s)} N(s)}{D(s) + N(s) \ \beta(s)}$$

In either case, denominators are the same and characteristic equation defined by

$$D_{FB}(s) = D(s) + \beta(s)N(s)$$

Often $\beta(s)$ and $\beta_1(s)$ are not dependent upon frequency and in this case

 $N_{FB}(s) = N(s)$

Basic Two-Stage Op Amp with Feedback

(with Miller compensation)

How does the Gain of the Two-Stage Miller-Compensated Op Amp Compare with Internal Compensated Op Amp with feedback $A_{FB} = \frac{A}{1 + AB}$?

$$s^2C_CC_L + sC_Cg_{00} + g_{00}g_{0d}$$

$$A_{FB}(s) \cong \frac{g_{m0}g_{md}}{s^2 C_C C_L + s C_C g_{00} + \beta g_{m0} g_{md}}$$

Zero in open-loop gain introduces the $-\beta g_{md}$ term in FB configuration

How was compensation done before the work of Fullagar ?

Internal node capacitor C_C or Miller C_C added externally Or "load compensation" before output buffer added externally

Termed "externally compensated"

$\begin{array}{l} \text{Basic Two-Stage Op Amp} \\ \text{(with Miller compensation)} & {}^{A_{FB}} = \frac{A}{1+A\beta} \\ \\ & & \\$

 $\rm V_{SS}$

Review of Basic Concepts

Consider a second-order factor of a denominator polynomial, P(s), expressed in integer-monic form

 $P(s)=s^2+a_1s+a_0$

Then P(s) can be expressed in several alternative but equivalent ways

$$s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}$$
$$s^{2} + s2\zeta\omega_{0} + \omega_{0}^{2}$$
$$(s - p_{1})(s - p_{2})$$

and if complex conjugate poles,

$$(s+\alpha+j\beta)(s+\alpha-j\beta)$$

 $(s-re^{j\theta})(s-re^{-j\theta})$

and if negative real-axis poles

 $(s - p_1)(s - kp_1)$

These are 7 different 2-paramater characterizations of the second-order factor and it is easy to map from any one characterization to any other !

 $\{a_1 \ a_0\} \ \{\omega_0 \ Q\} \ \{\omega_0 \ \zeta\} \ \{p_1 \ p_2\} \ \{\alpha \ \beta\} \ \{r \ \theta\} \ \{p_1 \ k\}$

Review of Basic Concepts

Observe: Q=0.5 corresponds to two identical real-axis poles Q=.707 corresponds to poles making 45° angle with Im axis

What closed-loop pole Q is typically required when compensating an op amp?

Recall:

Typically compensate so closed-loop poles make angle between 45° and 90° from imaginary axis

Equivalently: 0.5 < Q < .707

Basic Two-Stage Op Amp

(because it increases the pole Q and thus requires a larger C_C !) Closed-form expression for C_c !

Basic Two-Stage Op Amp

(with Miller compensation)

Standard Feedback Gain

$$A_{FB}(s) \cong \frac{g_{md}(g_{m0} - sC_{c})}{s^{2}C_{C}C_{L} + sC_{C}(g_{m0} - \beta g_{md}) + \beta g_{md}g_{m0}}$$

$$Q = \sqrt{\frac{C_{L}}{C_{C}}} \sqrt{\beta} \frac{\sqrt{g_{mo}} g_{md}}{g_{mo} - \beta g_{md}} \qquad C_{C} = \frac{C_{L}\beta}{Q^{2}} \frac{g_{mo}}{(g_{mo} - \beta g_{md})^{2}}$$

Question: Can we express C_C in terms of the pole spread k instead of in terms of Q? Recall when criteria $2\beta A_o < k < 4\beta A_o$ was derived (Lect 13), started with expression:

No! Relationship between k and Q was developed for 2nd-order lowpass open-loop gain (i.e. no zeros present!)

Basic Two-Stage Op Amp with Feedback

(with Internal Node compensation)

Status on Compensation

Generally not needed for single-stage op amps

Analytical expressions were developed with $A_{FB} = \frac{A}{1 + A\beta}$ for Two-stage with internal node compensation (no OL zeros) Two-stage with load compensation (no OL zeros) Two-stage with basic Miller compensation (OL zero, single series comp cap)

Will now develop a more general compensation strategy

Stay Safe and Stay Healthy !

End of Lecture 15