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Compensation of Feedback Amplifiers 



Analysis of Internal Node Compensated 

Two-Stage Op Amps

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
C

C
L

Can’t get everything but can get most of the small-signal results

Consider single-ended input-output (differential analysis only slightly different)

Since internal node  compensated,  must have p1<<p2

Review from Last Time



Analysis of Internal-Node Compensated 

Two-Stage Op Amps
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Analysis of Internal-Node Compensated 

Two-Stage Op Amps
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Analysis of Load Compensated Two-Stage 

Op Amps
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Can’t get everything but can get most of the small-signal results

Review from Last Time



Analysis of Externally Compensated Two-

Stage Op Amps

( )GOF1 OP1

1

1

G
p

C

+
=

( )GOF2 OP2

2

C

G
p

C

+
=

G G

mF1 mF2
V0

OF1 OP1 OF2 OP2

G G
A

G G

  
=   

+ +  

2pBW =

( )G

mF1 mF2

OF1 OP1 C

G G
GB

G C
=

+

GOF1GMF1V1V1

C1
GOF2GMF2V2V2

CC

GOP2GOP1

VIN

VOUT

Review from Last Time



Miller Capacitance - Review

If V2= -AV1    then for A large

( ) C
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Thus, a large effective capacitance can be created with a much smaller 

capacitor if a capacitor bridges two nodes with a large inverting gain  !!
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C

C1EQ C2EQ

Note:  The symbol “A” used in the Miller Capacitance should not be confused with the gain of the op amp



Miller Capacitance - Review

If V2= -AV1    then for A large
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• If A changes with frequency, C1EQ and C2EQ are no longer pure capacitors

• More useful for giving a concept than for accurate actual analysis because of 

frequency dependence of A
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Miller Capacitance - Review
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The Basic Concept – from capacitance multiplication
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Miller Capacitance - Review
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Internal-Node Miller-Compensated Two-Stage Op Amp

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
C

C
L

Standard Internal Node Compensation Miller Compensation
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Compensation capacitance reduced by approximately the gain of the 

second stage! (the value of the two CC’s are not the same)

Since the gain of the second stage is not constant, however, a new 

analysis is needed

If CC is small enough, this can  become an internally compensated op 

amp with internal-node compensation

The second stage amplifier can be used to create a Miller 

capacitance at its input with no circuit overhead!
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Intuitive Pole Analysis of Internally Miller-Compensated Two-Stage Op Amps
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Intuitive Pole Analysis of Internally Miller-Compensated Two-Stage Op Amps
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Intuitive Pole Analysis of Internally Miller-Compensated Two-Stage Op Amps

• To find the high-frequency pole p2, the circuit has changed

• At high frequencies CC looks like a short circuit

• Define G2 to be conductance facing CL for pole analysis

Note the F2 block is now “diode connected” at high frequencies
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Intuitive Pole Analysis of Internally Miller-Compensated Two-Stage Op Amps
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Will be shown later that CC introduces a zero in the gain function
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Intuitive Pole Analysis of Internally Miller-Compensated Two-Stage Op Amps
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Has the GB decreased with the Miller compensation?

No, because the CC decreased by the same factor!
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|p2| has increased !
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Basic Two-Stage Op Amp
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o Essentially just a cascade of two common-source stages

o Same gain and pole expressions as developed for the cascade

o Compensation Capacitor CC used to get wide pole separation

o Two poles in amplifier

o No universally accepted strategy for designing this seemingly

simple amplifier

Pole spread                      makes CC unacceptably large
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The 7T Op Amp



Basic Two-Stage Op Amp (with Miller Compensation)

o Reduces CC by approximately A02

o Pole spread                     makes size of CC manageable 

o One of the most widely used op amp architectures
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The 7T Miller-Compensated Op Amp
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Basic Two-Stage Miller Compensated Op Amp
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By inspection    ( Notation:                                     )
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Will also get these results from a more complete (and time consuming) analysis

This analysis was based only upon finding the poles and will miss zeros if they exist

If zero does not affect GB

1 1p p= −
2 2p p= −

The 7T Miller-Compensated Op Amp



Small Signal Analysis of Basic Two-Stage Op Amp
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Differential Small Signal Equivalent

Norton Equivalent One-Port Two-Port

(with Miller compensation)

(Will now obtain the actual gain which will show zeros if they exist )



Small Signal Analysis of Basic Two-Stage Op Amp
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Small Signal Analysis of Basic Two-Stage Op Amp
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Small Signal Analysis of Basic Two-Stage Op Amp
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as are M3 and M4
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Small Signal Analysis of Basic Two-Stage Op Amp
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Small Signal Analysis of Basic Two-Stage Op Amp
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Small Signal Analysis of Basic Two-Stage Op Amp

Differential Small Signal Equivalent

M
1 M

2

M
3

M
4

2

Vd

2

Vd−

M
5

M
6

C
L

C
C

V
OUT

g
md

V
d

g
Od V

2
g

mO
V

2
g

OO

V
OUT

C
L

C
C

(with Miller compensation)

(This happens to be the general form for a two-stage structure with a 

quarter circuit and counterpart circuit !)



Small Signal Analysis of Basic Two-Stage Op Amp
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This simplifies to:

Solving we obtain:

(with Miller compensation)

(This happens to be the general form for a two-stage structure with a 

quarter circuit and counterpart circuit !)
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where for the 7T implementation

Small Signal Analysis of Basic Two-Stage Op Amp

Differential Small Signal Equivalent

Summary:

(with Miller compensation)

m0 m5g g=

How does this compare to the intuitive approximate analysis that obtained only the 

poles? 

Note presence of single RHP zero!
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Small Signal Analysis of Basic Two-Stage Op Amp
(with Miller compensation)

Detailed analysis Inspection Analysis
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Small Signal Analysis of Basic Two-Stage Op Amp

Differential Small Signal Equivalent

(with Internal node compensation …. i.e. not Miller compensation)
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Small Signal Analysis of Basic Two-Stage Op Amp

Differential Small Signal Equivalent

This can be approximated by :

Solving we obtain:

(with Internal node compensation)
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Can show this is the same as was obtained by inspection !



How does the Gain of the Two-Stage Miller-Compensated 

Op Amp Compare with Internal Compensated Op Amp?

( ) 1
0

1 2

s
+1

z
A s A

s s
+1 +1

p p

=
  
  
  

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
C

C
L

F
1

P
1

V
IN

F
2

P
2

V
OUT

C
C

C
LC

CEFF

( )
( )md m0 C

2
C L m0 C oo od

g g -sC
A s =

s C C +sg C +g g
( ) md m0

2
C L C oo oo od

g g
A s

s C C +sC g +g g


( ) 0

1 2

1
A s A

s s
+1 +1

p p

=
  
  
  

2
0 0

1

p
4β A 2β A

p
 

Compensation criteria:

Re

jω

p1p2 z1

Re

jω

p1p2

must be developed



Simple pole calculations for 2-stage op amp

Since the poles of the 2-stage op amp must be widely 

separated, a simple calculation of the poles from the 

characteristic polynomial is possible.

Assume p1 and p2 are the poles and |p1| << |p2|

D(s)=s2+a1s+a0

but

D(s)=(s-p1)(s-p2)=s2-s(p1+p2)+p1p2  s2  - p2s + p1p2

determines p2

determines p1

thus

p2=- a1 and   p1 = - a0/a1



Example
A feedback amplifier has a characteristic polynomial of

1.8E39000ssD(s) 2 ++=
Without using the quadratic equation, determine the poles by inspection and 

determine the ratio of the two poles.



solution

1.8E39000ssD(s) 2 ++=

A feedback amplifier has a characteristic polynomial of

Ph=-9000

1.8E39000ssD(s) 2 ++=
PL=-2

Ratio = 4500

1.8E39000ssD(s) 2 ++=
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From small signal analysis:

Can now use these results to calculate poles of 

Basic Two-stage Miller Compensated Op Amp
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From Previous Inspection 
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Note the simple results obtained from inspection agree with the 

more time consuming results obtained from a small signal 

analysis



Feedback applications of the two-

stage Op Amp

A

β

X
IN

X
OUTX

1

How does the amplifier perform with feedback ?

How should the amplifier be compensated?  



Feedback applications of the two-

stage Op Amp

D(s)

N(s)
A(s) =

(s)D

(s)N

β(s)N(s)D(s)

N(s)

β(s)A(s)1

A(s)
(s)A

FB

FB
def n

FB =
+

=
+

=

N ( s )( s )N F B =

β ( s ) N ( s )D ( s )( s )D F B +=

Open-loop Gain

Standard Feedback Gain

• Open-loop and closed-loop zeros identical (for standard feedback gain)

• Closed-loop poles different than open-loop poles

• Often β(s) is not dependent upon frequency

• Open-loop zeros, gain, and β play a key role in determining closed-loop poles

A

β

XIN
XOUT



Feedback applications of the two-

stage Op Amp

D(s)

N(s)
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β(s)A(s)
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(s)AFB
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=

N ( s )( s )N F B =

β ( s ) N ( s )D ( s )( s )D F B +=

Open-loop Gain

Alternate Feedback Gain

Often β(s) and β1(s) are not dependent upon frequency and in this case

Standard Feedback Gain

β(s)N(s)D(s)

N(s)
(s)β

β(s)

β(s)A(s)

1
1

(s)β

1

(s)A 11
FB

+
=
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=

In either case, denominators are the same and characteristic equation defined by

(often FB is not of “standard” form)

A

β

XIN
XOUT



Basic Two-Stage Op Amp with Feedback

o6o5oo ggg +=

m1md gg =
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Open-loop gain

Standard feedback  gain with constant β
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(with Miller compensation)
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How does the Gain of the Two-Stage Miller-Compensated Op Amp 

Compare with Internal Compensated Op Amp with feedback                    ?

F
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−


Zero in open-loop gain introduces the –βgmd term in FB configuration  



How was compensation done before the work of Fullagar ?
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Internal node capacitor CC or Miller CC added externally 

Termed “externally compensated”

Or “load compensation” before output buffer added externally 



Basic Two-Stage Op Amp
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Review of Basic Concepts

Consider a second-order factor of a denominator polynomial, P(s), 

expressed in integer-monic form

P(s)=s2+a1s+a0

Then P(s) can be expressed in several alternative but equivalent ways

( )( )

( )( )

( )( )

2 20
0

2 2

0 0

1 2

j j

1 1

ω
s s ω

Q

s s2 ω ω

s p s p

and if complex conjugate poles,

s α jβ s α jβ

s re s re

and if negative real axis poles

(s p )(s kp )

 − 

+ +

+  +

− −

+ + + −

− −

−

− −

These are 7 different  2-paramater characterizations of the second-order factor

and it is easy to map from any one characterization to any other !

{a1 a0}  {ω0 Q}  {ω0 ζ}  {p1 p2}  {α β}  {r  θ}  {p1 k} 



Review of Basic Concepts

2

0
02 ω

Q

ω
ss ++

Re

Im

oω



1
sinθ

2Q
=

ωo = magnitude of pole

Q determines the angle of the pole

Observe:     Q=0.5 corresponds to two identical real-axis poles

Q=.707 corresponds to poles making 45o angle with Im axis



Im

45
o

Maximally fast time-domain 

response w/o ringing

Maximally Flat 

Magnitude Response

Re

Typical Preferred 

Pole Locations

What closed-loop pole Q is typically required when 

compensating an op amp?

Recall:

Typically compensate so closed-loop poles make 

angle between 45o and 90o from imaginary axis

Im

45
o

Maximally fast time-domain 

response w/o ringing

Maximally Flat 

Magnitude Response

Re

Typical Preferred 

Pole Locations

Q=.707

Q=.5

0.5 Q .707 

Equivalently:



Basic Two-Stage Op Amp

04o2odo6o5oo gggandggg +=+=

m1md gg =
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Right Half-Plane Zero in OL Gain  (from Miller Compensation) Limits Performance

where

It can be shown that

m5mo gg =

( )
( ) m om dm dm oCLC

2

cm 0m d
F B

ggβgβgs CCCs

s Cgg
(s )A

+−+

−


But what pole Q is desired? .707< Q <0.5

(because it increases the pole Q and thus requires a larger CC!)

(with Miller compensation)

Closed-form expression for CC!

Standard Feedback Gain A

β

XIN
XOUT



Basic Two-Stage Op Amp
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(with Miller compensation)

( )
0TOT

0TOT
k large

βAk
Q βA

1 k k
= 

+

Question:  Can we express CC in terms of the pole spread k instead of in terms of Q?

Recall when criteria 2βAo<k<4βAo was derived (Lect 13), started with expression:

0TOT

2k large

βA
k

Q


No !   Relationship between k and Q was developed for 2nd-order lowpass

open-loop gain (i.e. no zeros present!)

Standard Feedback Gain
A

β

XIN
XOUT



Basic Two-Stage Op Amp with Feedback

o6o5oo ggg +=

m1md gg =

where

Open-loop gain

Standard feedback  gain with constant β

m5mo gg =

04o2od ggg +=

(with Internal Node compensation)
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Status on Compensation

Generally not needed for single-stage op amps

Analytical expressions were developed with               for 
Two-stage with internal node compensation (no OL zeros)

Two-stage with load compensation (no OL zeros)

Two-stage with basic Miller compensation (OL zero, single series comp cap)

Will now develop a more general compensation strategy

FB

A
A

1 A
=

+ 



Stay Safe and Stay Healthy !



End of Lecture 15


